

Nährelemente und ihre chemischen Verbindungen								
N	Р	K	Mg	Ca	S			
Stickstoff	Phosphor	Kalium	Magnesium	Calcium	Schwefel			
-	P ₂ O ₅	K₂O	MgO	CaO	(SO ₃)			
	"Phosphat"	"Kali"	Mg-Oxid	"Kalk"				
	P * 2,29 = P ₂ O ₅	K * 1,2 = K ₂ O	Mg * 1,66 = MgO		S * 2,5 = SO ₃			
HNO ₃ NH ₄ OH Nitrate	H ₃ PO ₄ Phosphate	KOH Kalisalze	Mg(OH) ₂ Mg-Salze	Ca(OH) ₂ Ca-Salze	H ₂ SO ₄ Sulfate			
NO ₃ - NH ₄ +	HPO ₄ H ₂ PO ₄ -	K+	Mg++	Ca++	SO ₄			
NH ₄ NO ₃ Ca(NO ₃) ₂ CO(NH ₂) ₂ CaCN ₂ NH ₄ H ₂ PO ₄ (NH ₄) ₂ HPO ₄ (NH ₄) ₂ SO ₄	Ca(H ₂ PO ₄) ₂ (NH ₄) ₂ HPO ₄ Ca ₅ (PO ₄) ₃ OH	KCI K₂SO₄	MgSO ₄ MgO Mg(OH) ₂ MgCO ₃	CaO Ca(OH) ₂ CaCO ₃	CaSO ₄ MgSO ₄ K ₂ SO ₄ (NH ₄) ₂ SO ₄			
	N Stickstoff - HNO ₃ NH ₄ OH Nitrate NO ₃ NH ₄ * NH ₄ NO ₃ Ca(NO ₃) ₂ CO(NH ₂) ₂ CaCN ₂ NH ₄ H ₂ PO ₄ (NH ₄) ₂ HPO ₄	N P Stickstoff Phosphor P ₂ O ₅ "Phosphat" P * 2,29 = P ₂ O ₅ HNO ₃ H ₃ PO ₄ NH ₄ OH Nitrate Phosphate NO ₃ NH ₄ H Phosphate NO ₃ NH ₄ + H ₂ PO ₄ (NH ₄) ₂ HPO ₄ (Ca ₅ (PO ₄) ₃ OH	N P K Stickstoff Phosphor Kalium - P₂O₅ K₂O "Phosphat" "Kali" P * 2,29 = P₂O₅ K * 1,2 = K₂O HNO₃ NH₄OH Nitrate H₃PO₄ Phosphate KOH Kalisalze NO₃ NH₄+ HPO₄ KH K+ NH₄+PO₄ Ca(NO₃)₂ CO(NH₂)₂ CACN₂ CACN₂ CACN₂ CACN₂ CACN₂ CACN₂ CACN₂ (NH₄)₂HPO₄ (NH₄)₂HPO₄ (NH₄)₂HPO₄ (NH₄)₂HPO₄ KCI K₂SO₄	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N P K Mg Ca Stickstoff Phosphor Kalium Magnesium Calcium - P₂O₅ K₂O MgO CaO - P²2O₅ K₂O MgO "Kalk" - P²2,29 = P₂O₅ K²1,2 = MgO Mg²1,66 = MgO MgO - HNO₃ NH₄OH Nitrate H₃PO₄ Phosphate KOH Kalisalze Mg(OH)₂ Mg-Salze Ca(OH)₂ Ca-Salze NO₃ NH₄+ H₂PO₄ Ca(NH₄)₂ Ca(NH₄)₂ H₂O₄ (NH₄)₂ HPO₄ (NH₄)₂ HP			

Schwefel im Boden

Schwefel kommt in den Böden der humid gemäßigten Klimazonen mit ca. 0,1-1,5 % vor. Nur ein sehr kleiner Teil (< 5 %) ist wasserlöslich. Der unlösliche Teil ist **vor allem organisch gebunden.**

- in primären Mineralien: als metallisches Sulfid (z.B. FeS)
- · unter ariden Bedingungen angereichert:

Gips (CaSO₄ ·2 H₂O) Bittersalz: (MgSO₄ ·7 H₂O)

FeS, ZnS ...

- durch Verwitterung → Sulfatbildung
 - marine Sedimente (Schlick, Salzmarschen) meist sehr S-reich
- · Sulfat-Ionen in der Bodenlösung
 - Sulfat (pflanzenaufnehmbare Fraktion) im Boden sehr mobil → auswaschungsgefährdet
- · adsorbiertes Sulfat
 - nur unspezifische Sorption → unbedeutend
- organisch gebundener Schwefel
 - Erntereste (S-haltige Aminosäuren (Methionin, Cystein) und sekundäre Pflanzenstoffe)
 - in organischen Böden hohe S-Reserven
 - Mineralisation zu Sulfat

3

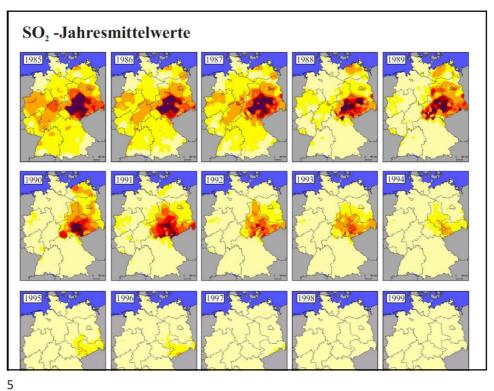
3

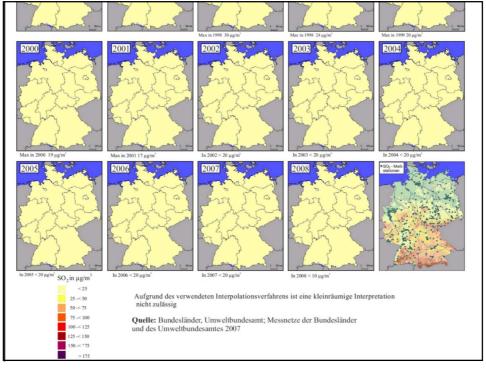
Früher: Schwefelzufuhr aus der Luft

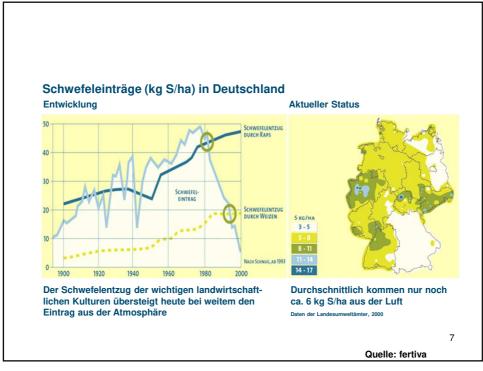
S-Bedarf:

Getreide 10 bis 20 kg S/ha
Raps 20 bis 40 kg S/ha

Der Eintrag von Schwefel aus der Atmosphäre (mit saurem Regen) ist


stark zurückgegangen (< 10 kg S/ha und Jahr)


bis in die 1980er Jahre: 50 und mehr kg S ha-1 a-1

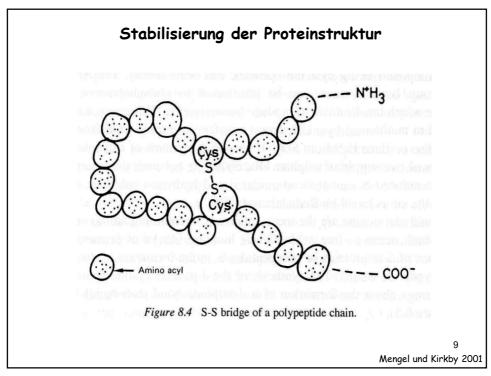

(bes. in Ballungsräumen, Industriegebieten)

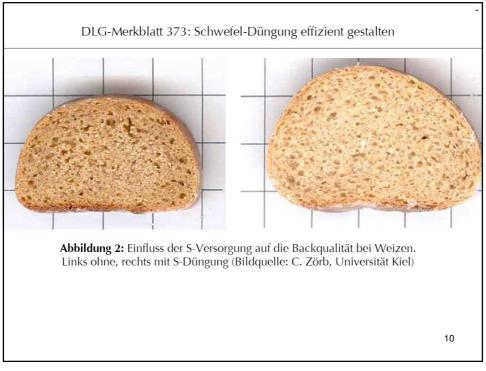
Schwefelmangel war früher selten und ist heute verbreitet.

4

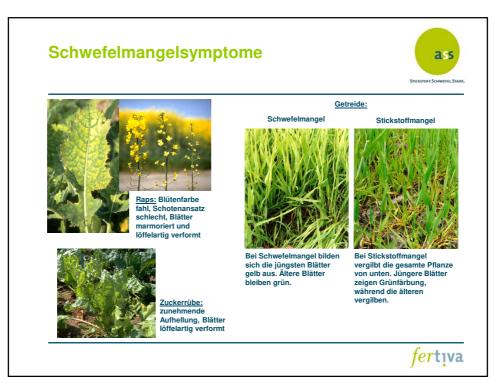
Aufnahme und Funktionen des Schwefels

- · SO4---Aufnahme über die Wurzeln
- · SO₂ (gasförmig über die Stomata) wirkt ab ca. 1,5 mg/m³ toxisch

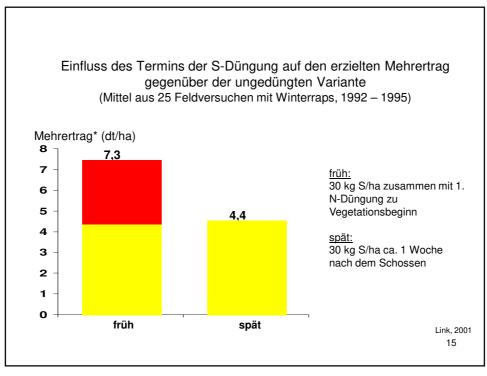

Die **Assimilation** des Schwefels erfolgt durch Reduktion und Einbau in S-haltige Aminosäuren (nur Pflanzen und Prokaryonten sind dazu in der Lage).


Baustein in:

- · S-haltigen Aminosäuren (Methionin und Cystein)
- Enzymen (Nitrogenase, Nitratreduktase) und Co-Enzymen
- · Lauchöle und Senföle (Glukosinolate)

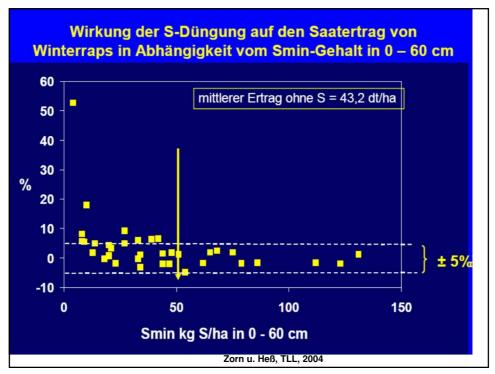

Als SH-Gruppe kann S in Form einer reaktiven Gruppe direkt in enzymatische Reaktionen eingreifen und **Disulfidbrücken** bilden: $R-SH+R-SH \rightarrow R-S-S-R+2H$

8



Knappe S-Versorgung im Frühjahr: Die Mineralisation des Schwefels setzt temperaturbedingt später ein als die des Stickstoffs

- · leichte, humusarme, flachgründige Böden
- · strukturgeschädigte Böden
- · hohe Niederschlagsmengen während der Wintermonate
- Frühjahrstrockenheit
- · niedrige Temperaturen
- Düngungssysteme ohne Zufuhr organischer Düngemittel
- industrieferne Standorte (weniger SO₂ aus der Luft)


VDL #FA		Standpunkt			
Tabelle 2: Empfohle	ne S-Düngemenge und	Düngezeitpunkt (Bodendüngung)			
Fruchtart	Düngemenge in kg S/ha	Düngezeitpunkt			
Getreide	10-20	Vegetationsbeginn bis 1-Knotenstadium			
Winterraps	20-40	Vegetationsbeginn 1)			
Zuckerrübe	10-20	Zur Saat bis 8-Blatt-Stadium			
Kartoffel	10-20	Zur Pflanzung bis vor dem letzten Häufeln			
Mais	10-20	Zur Saat bis 6-Blatt-Stadium			
Grünland	20-40	Vegetationsbeginn			
Kohl	30-50	Zur Pflanzung			
sonstiges Gemüse	20-40	Zur Saat bzw. zur Pflanzung			

VDLUFA, 2000

Verfahren	Vorteile	Nachteile
Schwefel- Schätzrahmen	sehr einfaches Verfahren keine Kosten jederzeit einsetzbar	objektive Beurteilung und Punkte- vergabe nicht immer gewährleiste
S _{min} -Boden- untersuchung	Erfassung der tatsächlich verfügbaren Vorräte an Sulfat im Boden gemeinsame Probenahme mit N _{min}	rel. aufwendige Probenahme Analysekosten keine Informationen über S-Nachlieferungsvermögen aus Bodenpools sichere Bedarfsprognose nur bei Winterraps
Pflanzenanalyse	exakte Erfassung des S-Versorgungszustandes der Pflanzen	nicht für alle Pflanzenarten und Wachstumsstadien verlässliche Vegleichswerte aufwendige Probenahme Beratungsergebnis kommt oft zu spät für zeitgerechte S-Düngung Analysekosten

tandorteigenschaften odenart 1. 8. Sant Ulemiger oder urbärfliger Sant 2. 8. sansges unsüge longer oder schäufliger tahn 2. 8. tansges unsüge longer oder schäufliger tahn 1. 8. tansges oder lehninger oder lehninger tahn lumusgehalt erfügbarer Wurzelraum	sandiger Boden, Schotte lehmiger Boden ²⁹ toniger Boden ³¹ arm, < 2% Humus	erboden ¹⁾	1				
1. B. Sand, Ubbringer oder schliftiger Sand 2. B. Sand Sign singler 2. B. Ton, sandiger oder schliftiger Ishm 2. B. Ton, sandiger oder leibninger Ton	lehmiger Boden ²⁵ toniger Boden ²¹ arm, < 2% Humus	erboden ¹⁾	1				
iz. B. sandiger, sandig-toniger oder schluffiger tehm z. B. Ton, sandiger oder lehmiger Ton lumusgehalt	toniger Boden ²⁾ arm, < 2% Humus					_	
z. II. Ton, sandiger oder lehmişer Ton İumusgehalt	arm, < 2% Humus		3				
	middle of the state of the same		2				
erfügbarer Wurzelraum	mittel, > 2-4% Humus		3				
erfügbarer Wurzelraum	reich, > 4% Humus		4				
	flachgründig		2				
Krume + durchwurzelter Raum)	tiefgründig		4				
	vorhanden		1				
trukturschäden	stellenweise vorhanden		3				
Verschlämmung, Bodenverdichtung, Pflugsohle)	nicht vorhanden		4				
	unterdurchschnittlich		1			_	
N _{min} -Gehalt zu Vegetationsbeginn im Vergleich	durchschnittlich		3				
um langjährigen Mittelwert	überdurchschnittlich	Bewirtschaftung					
Vitterung	300000000000000000000000000000000000000	Bewirtstnattung				Anbau jedes 3. Jahr	2
	überdurchschnittlich	Schwefelzehrende Kulturen in der Fruchtfolge			Anbau jedes 4. Jahr	3	
liederschläge (Oktober-März)	durchschnittlich	(Raps, Kohlarten, Legur	1).	Anbau jedes 5. Jahr	4		
im Vergleich zum langjährigen Mittelwert	unterdurchschnittlich	In diesem Jahr angebaute Kultur				Raps, Kohl, Leguminosen	1
	unterdurenschnittlich					Andere Kulturen	3
		Schwefelmangel bereits aufgetreten (Ertragseinbussen, Blattanalyse, Mangelsymptome)		Ja	1		
				Nein oder Unbekannt	3		
		Ertragsniveau (dt/ha)		mittel	niedrig	hoch	2
		Raps	> 40	30-40	< 30	mittel	3
		Getreide > 75 50-75 < 50		niedrig	4		
		Düngung Einsatz organischer Dünger aus Tierhaltung (keine Gründungung) In den letzten 3 Jähren Einsatz nennenswerter Schwei-					
						0 GV/ha	1
						≤ 1,5 GV/ha	2
						> 1,5 GV/ha	3
						Nein	1
		felmengen aus Mineraldüngern (z. B. ass, Nitrophoska® 13+9+16(+4+7), 20+8+8(+3+4), Kaliumsulfat)		Ja	3		
		16-29 Punkte: Wahrscheinlichkeit von Schwefelmange 30-37 Punkte: Bestände (besonders Raps) genau beoba 38-47 Punkte: Schwefelmangel zur Zeit nicht zu erwart		felmangel ho	ten, Düngung mit ass empfehlenswert		
		38-47 Punkte: Schwele	eimangeiz	ur zeit nicht	zu erwarten		Summe

Merkmal	Bewertung mit Punktzahlen	
Standorteigenschaften		
Bodenart	Sand ¹⁾ , Schotter	1
1) z. 0. Sand, lehmiger oder schluffiger Sand	Lehm ³⁾	4
2) z. 8. sandiget sandig-toniger oder schluffiger Lehm 3) z. B. Ton, sandiger oder lehmliger Ton	Ton ³ , Moorboden	7
	unter 5 Jahre	1
Narbenalter	über 5 Jahre	3
	unterdurchschnittlich	1
N _{mst} -Situation auf Ackerflächen laut Mitteilung der amtlichen Beratung	normal	3
	überdurchschnittlich	5
S-Mangel bereits erkannt/in landwirtschaftlichen ·	Ja	1
	Nein	3
Witterung		
	hoch	1
Jahresniederschläge im Vergleich zum	normal	3
langjährigen Mittelwert	niedrig	5
Bewirtschaftung		
-	Gräserreich	2
Bestandeszusammensetzung	Kräuterreich	3
	Portionsweide, intensive Umtriebsweide, Schnittnutzung, 3-4 Schnitte	1
	Umtriebsweide, Schnittnutzung, 1-2 Schnitte	3
	Standweide	5
_	hoch	1
Ertragsniveau Grünland	mittel	3
	niedrig	5
Düngung		
	< 1 GV/ha	1
Höhe der Organischen Düngung	1-2 GV/ha	2
	> 2 GV/ha	3
In den letzten 3 Jahren Einsatz nennenswerter Schwe-	Nein	1
felmengen aus Mineraldüngern (z. B. ass, Nitrophoska® -	Ja	3
13+9+16(+4+7), 20+8+8(+3+4), Kainit)	Ja	3

Tiefenabhängige Richtwerte für S_{min}-Gehalte in Thüringer Böden

(Berücksichtigung des Steingehaltes)

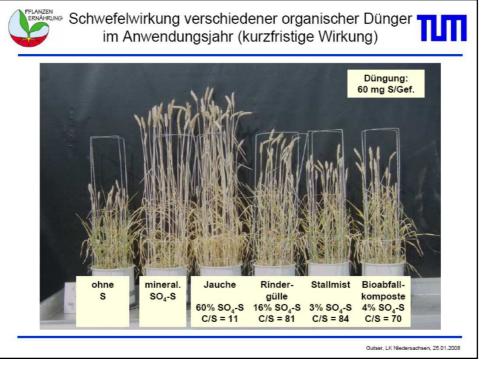
Kultur	S _{min} -Gehalt (kg S/ha)				
Kuitui	0 – 60 cm	0 – 90 cm			
Winterraps	50	60			
Winterweizen u. -gerste	40	50			

Zorn u. Heß, TLL, 2004

21


Mit der Pflanzenanalyse kann der aktuelle Schwefel-Ernährungszustand sicher erfasst werden. Die Angabe der S-Konzentrationen erfolgt normalerweise in % der Trockenmasse und umfasst alle in der Pflanze vorliegenden S-Bindungsformen (s. Kapitel 1.2). Angaben zu den notwendigen Konzentrationen an Schwefel in der Pflanzentrockenmasse liegen zurzeit nur für Getreide (> 0,30 % S in der TS), Raps (> 0,45 % S in der TS) und Gras (> 0,30 % S in der TS) vor. Es kann aber davon ausgegangen werden, dass auch für die meisten anderen Ackerkulturen eine Mindestkonzentration von 0,30 % S in der TS angestrebt werden sollte. Zur Einschätzung des S-Versorgungszustandes sollte neben der Untersuchung der S-Konzentration im Pflanzenmaterial möglichst auch die N-Konzentration untersucht werden, da das ermittelte N:S-Verhältnis genauere Rückschlüsse zulässt. Typische N:S-Verhältnisse zeigt Tabelle 2.

Tabelle 2: N:S-Verhältnisse für verschiedene Kulturen


Kultur	Typische N:S-Verhältnisse
Raps/Rübsen/Senf/Kohlarten/Zwiebelgewächse	5:1
Getreide/Mais/Zuckerrüben/Kartoffeln	10:1
Leguminosen	5 – 8 : 1
Gras	8 – 12 : 1

DLG-Merkblatt 373: Schwefel-Düngung effizient gestalten

Dünger	S-Gehalt (%)	S-Bindungsform	Weitere Nährstoffe	Beispiele Handelsware	
Ammoniumsulfat	24	(NH ₄) ₂ SO ₄	21 % N	SsA, AS, Domogran	
Ammonsulfatsalpeter	13	(NH ₄) ₂ SO ₄	26 % N	ASS 26, ENTEC 26	
Ammoniumsulfat- Harnstoff	5 – 12	(NH ₄) ₂ SO ₄	30 – 38 % N	PIAMON 33-S, Urea-S	
Ammoniumnitrat mit S	6	(Ca)SO ₄	24 % N	YaraBela Sulfan	
N-Düngerlösung mit S	3 – 6	(NH ₄) ₂ SO ₄ + (ATS)	15 – 27 % N	PIASAN-S 25/6, ALZON flüssig-S 25/6, Domamon, NTS	
Ammonsulfat-Lösung	6 – 9	(NH ₄) ₂ SO ₄	5 – 8 % N	ASL	
Kaliumsulfat	18	K ₂ SO ₄	50 % K ₂ O	KALISOP	
Patentkali	17	K ₂ SO ₄ , MgSO ₄	30 % K ₂ O 10 % MgO	Patentkali	
Korn-Kali	4	MgSO ₄	40 % K ₂ O 6 % MgO 3 % Na	Korn-Kali	
Magnesia-Kainit	4	MgSO ₄	11 % K ₂ O 5 % MgO 20 % Na		
Kieserit (granuliert)	20	MgSO ₄	25 % MgO	ESTA Kieserit gran	
Bittersalz	13	MgSO ₄	16 % MgO	EPSO Top	
Elementarer Schwefel	60 – 98	S		Schwefellinsen/ -suspensionen	
Superphosphat	12	CaSO ₄	18 % P ₂ O ₂		
div. NPK mit S	2 – 12	$(NH_4)_2SO_4$			2
Kalkdünger mit S	≥ 2	CaSO ₄	≥ 80 % CaO	Kohlensaurer Kalk mit S Magnesiumkalk mit S	•

Tabelle 6: Schwefelgehalte in organischen Düngern								
Dünger	S-Gehalt [kg/t bzw. kg/m³]	Sulfat-Anteil [%]	C:S-Verhältnis					
Stallmist	0,3 - 0,8	< 10	80 – 90					
Gülle	0,2 - 0,7	10 – 20	30 – 50					
Jauche	0,2 - 0,3	60 – 80	10 – 15					
Biokompost	0,3 - 0,5	< 10	60 – 80					
Klärschlamm	0,8 – 1,0	< 30	10 – 30					
			25					
			25					

Wirkung einer Schwefeldüngung auf die Silagequalität

	1995	1996	1997	1998	1999
	KAS ASS				
Rohprotein %	16,4 17,3	18,7 20,0	16,1 18,5	16,0 17,3	15,0 18,8
Rohfaser %	29,4 28,3	24,9 24,7	24,8 23,0	26,2 27,5	23,3 29,8
Energie NEL	5,6 6,2	5,9 6,2	5,8 6,5	5,8 6,4	5,4 6,6

Qualität von Silage wird durch die Düngung mit ASS angehoben:

Rohprotein + 0,9 bis 3,8 %
 Rohfaser - 0,2 bis 6,5 %
 Energie + 0,3 bis 1,2 MJ/kg NEL

3 Standorte in Oldenburg LWK, 1995 bis 1999

Quelle: fertiva

Quelle: fertiva

28

beispielhafte Fragen zum Teil 4:

- Mit welchen Methoden kann man einen 5-Düngebedarf ermitteln?
- Welches Düngemittel enthält am meisten und welches am wenigsten Schwefel (Bsp. KAS, Kornkali, Ammoniumsulfat)?
- Das Ergebnis einer Analyse von Maissilage lautet: 8 % RP, 0,08 % 5, jeweils in TM. Worauf deutet das hin?
- Warum wirkt elementarer S als Dünger langsamer als Sulfat?
- Wie unterschieden sich 5- und N-Mangel bei jungen Getreidepflanzen?